Biofuels Viability

0

What is green? What is a viable economic alternative? What is reasonable and will do more bad than good? Welcome to Biofuels. Two scientists are challenging the currently accepted norms of biofuel production. A commentary published today in GCB Bioenergy reveals that calculations of greenhouse gas (GHGs) emissions from bioenergy production are neglecting crucial information that has led to the overestimation of the benefits of biofuels compared to fossil fuels.

A biofuel is a type of fuel whose energy is derived from biological carbon fixation. Biofuels include fuels derived from biomass conversion, as well as solid biomass, liquid fuels and various biogases. Although fossil fuels have their origin in ancient carbon fixation, they are not considered biofuels because they contain carbon that has been out of the carbon cycle for a very long time. Biofuels are gaining increased public and scientific attention, driven by factors such as oil price hikes, the need for increased energy security, concern over greenhouse gas emissions from fossil fuels, and support from government subsidies.

The newly published critique covers the Life Cycle Analysis models of bioenergy production. Life Cycle Analysis (LCA) is a technique used to measure and compile all factors relating to the production, usage, and disposal of a fuel or product. The authors conclude that LCAs are overestimating the positive aspects of biofuel use versus fossil fuel use by omitting the emission of CO2 by vehicles that use ethanol and biodiesel even when there is no valid justification.

Proponents of bioenergy argue that analyses should always ignore this CO2 because plants grown for biofuel absorb and therefore offset the same amount of carbon that is emitted by refining and combusting the fuel. This method double counts the carbon absorbed by plants when the bioenergy crops are grown on land already used for crop production or already growing other plants because the bioenergy does not necessarily result in additional carbon absorption. Biofuels can only reduce greenhouse gases if they result in additional plant growth, or if they in effect generate additional useable biomass by capturing waste material that would otherwise decompose anyway.

This overestimation magnifies when the omission of CO2 is combined with the underestimation of nitrogen emissions from fertilizer application. According to lead author Dr. Keith Smith, from the University of Edinburgh, “Emissions of N2O from the soil make a large contribution to the global warming associated with crop production because each kilogram of N2O emitted to the atmosphere has about the same effect as 300kg of CO2.”

He notes that several current LCAs underestimate the percentage of nitrogen fertilizer application that is actually emitted to the atmosphere as a GHG. The authors claim that the observed increase in atmospheric N2O shows that this percentage is in reality nearly double the values used in the LCAs, which greatly changes their outcome.

Since results of the LCAs have been widely utilized, Searchinger and Smith conclude that the overall development and research of alternative fuels has been heading in the wrong direction. “The best opportunity to make beneficial biofuels is to use waste material or to focus on relatively wet but highly degraded land,” notes Dr. Smith. If bioenergy crops are produced on degraded land, less GHGs will be emitted and more will be stored. There are additional benefits: this method will not compete with crop production for food, textiles, and other products.

Article by Andy Soos, appearing courtesy Environmental News Network.

About Author

Walter’s contributions to CleanTechies over the past 4 years have been instrumental in growing the publications social media channels via his ongoing editorial and data driven strategies. He is the founder and managing director of Sunflower Tax, a renewable energy tax and finance consultancy based in San Diego, California. Active in the San Diego clean technology community, participating in events sponsored by CleanTech San Diego, EcoTopics, and Cleantech Open San Diego, Walter has also been a presenter at numerous California Center for Sustainability (CCSE) programs. He currently serves as an adjunct professor at the University of San Diego School of Law where he teaches a course on energy taxation and policy.

Join the Conversation