A shortage of “rare earth” metals, used in everything from electric car batteries to solar panels to wind turbines, is hampering the growth of renewable energy technologies. Researchers are now working to find alternatives to these critical elements or better ways to recycle them.
raw materials
A team of genetic engineers reports it has developed an inexpensive process that uses fungus to convert raw materials such as straw and sawdust into a productive biofuel.
While it was previously known that the Trichoderma fungus produces the enzymes needed to break down
Seeking to quell fears among its trading partners, Beijing has announced that it will keep its 2011 rare earths export quota at 2010 levels.
China currently supplies 97 percent of the world’s rare earth elements and has gained its market dominance by cutting prices of the materials. China
Our high-tech products increasingly make use of rare metals, and mining those resources can have devastating environmental consequences. But if we block projects like the proposed Pebble Mine in Alaska, are we simply forcing mining activity to other parts of the world where protections may be far weaker?
Every time someone pushes the on-button on an electronic device, there is an expectation that the unit will power up quickly and display images in vibrant color. There is the further expectation, especially when using electronic devices for communications such as email access, web downloading, and texting that the response time will be immediate. We live in an age of technological arms races in which manufacturers gain market edge by creating products that are faster, have more applications, have a broader network reach, and generally do more.
The processing capacity of digital electronic devices doubles about every two years (Moore’s Law), and this capacity increase is enabled by an expanded use of elements. For example, computer chips made use of 11 major elements in the 1980s but now use about 60 (two-thirds of the periodic table!). And the electronics sector isn’t alone. Engine turbine blades for aircraft are made of alloys of a dozen or so metals; motors and batteries of green-technology hybrid vehicles depend on several of the rare earths; advances in medical imaging have come about by the unique band gaps of elements such as gadolinium. It seems that there are no limits to what the imagination can create except for the fact that many of the metals are globally rare and, given the nature of current technology, non-substitutable.