Utility scale wind turbines have become so technologically advanced that they have improved the cost of energy (COE) of wind enough to compete with today’s conventional energy sources. The ensuing reduction in COE has been the result of two governing forces: public policy and technological innovation.
The technological trends which have emerged thus far and what might be in store for the future direction of wind turbine technology are explored here. Policy and governmental R&D support will continue to be essential, and barriers to wind technology commercialization must be further broken down.
The patent landscape can shed significant insight into what technological trends have emerged thus far and what we might be able to infer for the future direction of wind turbine technology. The patent landscape analytics, as well as extensive analysis of forward looking competitive intelligence, helps shape our view of future technology trends for the industry.
Figure 1 – Analysis Methodology
The patent search results comprise over 8,665 patent families and over 32,834 global filings from 67 different countries, dating back to the year 1916 when some of the first grid connected technology took root. In addition to a component and technology keyword classification, an assessment of the relevance of each patent filing to the industry was performed and results were classified as Low, Medium, Medium/High, and High.
The assessment of industry relevance indicates the degree to which the patent owner has asserted its patent rights in the past or would be able to seek licenses or otherwise enforce the patent due to usage of that patent protected technology by their competition.
Figure 2 – Industry Relevance Assessment
With the results grouped by assignee (or patent owner), it should come as no shock to industry watchers who are the top assignees for wind patent filings. The list largely coincides with the top market share holders in the sector, and the chart below shows the number of patent families held by each company.
Figure 3 – Assignees (by Patent Family)
The industry relevance results indicate that only 0.8% of issued patents would have a high impact on the entire industry as a whole if those patents were universally asserted, with another 6.9% which may become relevant in the future depending on technology evolution and use. The remaining 92.3% of filings are merely providing owners with basic defensive IP protection on technologies they use in their own product lines, but are not widely used in the industry.
Table 1 – Portfolio Evaluation and Industry Benchmarking (Top 10 Companies)
All combined, the top 10 turbine OEM patent holders control 54.5% of patent filings. Only 67 patent families out of 8,665 catalogued thus far comprise technology which is broadly applicable to products and services offered commercially within the industry worldwide.
General Electric Company (GE) controls not only the largest number of patent families, but the largest percentage of all wind-related IP with over 15% of patent filings. While most companies are in-line with industry averages in terms of overall portfolio distribution of Low, Medium and High risk filings, GE’s High risk patents as a percentage of their overall portfolio is double the industry average at 1.8% vs. 0.8%. Their portfolio also comprises over 35% of all High risk patents held by all companies throughout the industry.
Figure 4 – Global Wind IP Ownership Share
Also notable is that top-tier companies have a combined High and Medium/High set of filings which is above the industry average of 7.7%. The top 10 control over 77% of Medium/High and 80% of High risk patent filings. This confirms the strong correlation between investment in both R&D and IP protection and the commercial success of top-tier companies. There is a strong link between the reduced CapEx and optimized energy production resulting from the development and introduction of those patent protected technologies.
The heat map of the filing dates for the patent filings confirms that the majority of filings have occurred in the past decade or so. Comparison of this trend to turbine capacity additions worldwide is reflective of the shared influence of public policy on technology adoption and the subsequent cost efficiencies enabled by widespread deployment of wind turbines.
Please note that the 2012 – 2013 filings have not all yet published because of an 18 month window in which the patents are not made public. Filing count up to 2011 is comprehensive.
Figure 5 – Wind Industry Patent Filing Trends (Patent Families)
Countries favored for filing include the US, Europe and China, with PCT applications being used heavily in the past few decades. Collectively, the wind industry has spent nearly US$430M (in 2013 dollars) to date on patent protection across all jurisdictions since 1916. Our projections indicate that the total will exceed US$1B by 2020 and $2B by 2030, with escalation of filing pace assumed to be consistent to that of the past 5 years. Annual expenditure will top US$100M per year by 2022.
Figure 6 – Global Wind Industry Patent Filing Costs
Figure 7 – Global Wind Industry Patent Filings (Top 30 Countries)
Clearly IP capture will continue to be an important consideration for top tier wind companies who are developing and commercializing new products.
Article by Philip Totaro, Principal at Totaro & Associates, a consulting firm focused on innovation strategy, competitive intelligence, product development and patent search. To find out more, or get in touch please visit www.totaro-associates.com.
Article appearing courtesy Green Patent Blog.